5 years ago

From Adhesion to Wetting: Contact Mechanics at the Surfaces of Super-Soft Brush-Like Elastomers

From Adhesion to Wetting: Contact Mechanics at the Surfaces of Super-Soft Brush-Like Elastomers
Sergei S. Sheiko, Mohammad Vatankhah-Varnoosfaderani, Matthew H. Everhart, Maria Ina, Zhen Cao, Andrey V. Dobrynin, William F. M. Daniel
Fundamental understanding of rigid particle indentation into soft elastic substrates has been elusive for decades. In conventional heterogeneous and multicomponent systems, the ill-defined interplay between elastic and capillary forces has confounded explanation of the crossover region between the classical wetting and adhesion regimes. Herein, we study the indentation behavior of micrometer-sized silica particles on supersoft, solvent-free PDMS elastomers with brush-like network strands. By varying the side chain grafting density and the cross-linking density of the networks, we control their elastic modulus from ∼1 to 100 kPa without adding solvent. This isostructurally regulated balance between elastic and capillary forces allows for accurate mapping of the entire range of particle–substrate interactions by measuring indentation depth as a function of substrate stiffness and particle radius. A generalized theoretical model, accounting for the collaborative contribution of both forces to the system free energy, demonstrates excellent quantitative agreement with our experimental results as well as with results of computer simulation for particles in contact with soft surfaces.

Publisher URL: http://dx.doi.org/10.1021/acsmacrolett.7b00419

DOI: 10.1021/acsmacrolett.7b00419

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.