5 years ago

Graphene derivatives in responsive hydrogels: Effect of concentration and surface chemistry

Graphene derivatives in responsive hydrogels: Effect of concentration and surface chemistry
Reduced graphene oxide (RGO) containing composite hydrogels, based on poly(N-isopropylacrylamide) (PNIPA) were prepared by two different methods: (i) by incorporating RGO directly into the polymer matrix; (ii) applying a post-synthesis reduction of the graphene-oxide (GO) already incorporated into the polymer. The samples were compared by various microscopic (small angle neutron scattering, differential scanning calorimetry, 1H NMR spectroscopy, thermogravimetry) and macroscopic (kinetic and equilibrium swelling properties and mechanical testing) techniques. Results from microscopic and macroscopic measurements show that the dispersity of the nanoparticles as well as their interaction with the polymer chains are influenced by their surface chemistry. Incorporation of nanoparticles limits the shrinkage and slows down the kinetics of the thermal response. Both thermogravimetric and solid-state NMR measurements confirmed strong polymer – nanoparticle interaction when hydrophilic GO was used in the synthesis. In these cases, the slow thermal response may be explained by the decrease of the free volume inside the nanocomposite matrix caused by a hypernodal structure. Our results imply that both the chemistry and the concentration of incorporated graphene derivatives are promising in tuning the thermal responsivity of PNIPA.

Publisher URL: www.sciencedirect.com/science

DOI: S0014305716313076

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.