5 years ago

Non-covalent interactions between poly(N-isopropylacrylamide) and small aromatic probe molecules studied by NMR spectroscopy

Non-covalent interactions between poly(N-isopropylacrylamide) and small aromatic probe molecules studied by NMR spectroscopy
One of the most important goals in drug delivery is to carry drug molecules to their target as selectively and efficiently as possible. To accomplish this goal it is crucial to understand the interactions of carriers and their loading. The interactions between a thermoresponsive potential drug carrier polymer, poly(N-isopropylacrylamide) (PNIPA) and small aromatic probe molecules: phenol, dopamine and indole derivatives including tryptophan were studied by using solution-state NMR spectroscopy. These substances represent structural elements often found in pharmaceutically relevant compounds. The indole ring is an important part of biologically active natural products, it can be found in several plants and animals. To investigate the effect of temperature on binding and the significance of coil-to-globule transition, 1H T 1 and T 2 relaxation times, 1H one- and two-dimensional nuclear Overhauser effect spectroscopy (NOESY) and diffusion ordered spectroscopy (DOSY) measurements were carried out in D2O and organic solvents. In the case of phenol and indole derivatives a strong interaction was observed above the lower critical solution temperature (LCST), for it to be much weaker below. According to relaxation measurements only the aromatic ring of tryptophan is bound to the polymer. No interaction was observed between dopamine and the polymer.

Publisher URL: www.sciencedirect.com/science

DOI: S0014305716313064

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.