5 years ago

Origin of mechanical stress and rising internal energy during fast uniaxial extension of SBR melts

Origin of mechanical stress and rising internal energy during fast uniaxial extension of SBR melts
We carry out simultaneous mechanical and IR-thermal-imaging based temperature measurements of SBR melts during uniaxial extension in order to delineate the nature of the observed mechanical responses. Using the first law of thermodynamics, we evaluate the enthalpy change h 1 associated with the temperature rise in the extending melt, estimate the heat loss to the surrounding, and conclude that there is an appreciable non-thermal enthalpic buildup h 2 = (w − h 1 − q) during either adiabatic or isothermal extension. The monotonic increase of h 2 with the stretching ratio λ until the onset of inhomogeneous extension or melt rupture reveals that fast melt extension is largely elastic even after yielding in presence of partial chain disentanglement. At high rates, the lock-up of chain entanglement produces such a high level of h 2 that is rarely seen in extension of crosslinked rubbers. When melt extension is carried out under isothermal condition, we show that the time-temperature superposition principle (TTS) fails to predict the transient response of a SBR melt at a fixed effective rate involving three temperatures. The failure of the TTS suggests that the terminal chain dynamics show different temperature dependence from the local segmental dynamics that control the transient stress responses.

Publisher URL: www.sciencedirect.com/science

DOI: S0032386117307085

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.