3 years ago

AcetylacetonateBODIPY-Biscyclometalated Iridium(III) Complexes: Effective Strategy towards Smarter Fluorescent Photosensitizer Agents

AcetylacetonateBODIPY-Biscyclometalated Iridium(III) Complexes: Effective Strategy towards Smarter Fluorescent Photosensitizer Agents
Rebeca Sola-Llano, Virginia Martínez-Martínez, Angeles Villanueva, Maria J. Ortiz, Iñigo López-Arbeloa, Hegoi Manzano, Eduardo Palao, Antonia R. Agarrabeitia, Andrea Tabero
Biscyclometalated IrIII complexes involving boron-dipyrromethene (BODIPY)-based ancillary ligands, where the BODIPY unit is grafted to different chelating cores (acetylacetonate for Ir-1 and Ir-2, and bipyridine for Ir-3) by the BODIPY meso position, have been synthesized and characterized. Complexes with the BODIPY moiety directly grafted to acetylacetonate (Ir-1 and Ir-2) exhibit higher absorption coefficients (ϵ≈4.46×104 m−1 cm−1 and 3.38×104 m−1 cm−1 at 517 nm and 594 nm, respectively), higher moderate fluorescence emission (φfl≈0.08 and 0.22 at 528 nm and 652 nm, respectively) and, in particular, more efficient singlet oxygen generation upon visible-light irradiation (φΔ≈0.86 and 0.59, respectively) than that exhibited by Ir-3 (φΔ≈0.51, but only under UV light). Phosphorescence emission, nanosecond time-resolved transient absorption, and DFT calculations suggest that BODIPY-localized long-lived 3IL states are populated for Ir-1 and Ir-2. In vitro photodynamic therapy (PDT) activity studied for Ir-1 and Ir-2 in HeLa cells shows that such complexes are efficiently internalized into the cells, exhibiting low dark- and high photocytoxicity, even at significantly low complex concentration, making them potentially suitable as theranostic agents. Kill and cure: New boron-dipyrromethene (BODIPY)–iridium(III) complexes, synthesized by a straightforward synthetic approach, exhibit efficient singlet oxygen generation, low dark and high photocytoxicity under visible radiation even at low photosensitizer concentrations.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201701347

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.