3 years ago

Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior

Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior
Commercial 18650-type lithium ion cells employing an Al2O3 coating on the anode surface as a safety feature are investigated regarding cycling behavior at low temperatures and related safety. Due to irreversible lithium metal deposition, the cells show a pronounced capacity fading, especially in the first cycles, leading to a shortened lifetime. The amount of reversibly strippable lithium metal decreases with every cycle. Post-mortem analysis of electrochemically aged anodes reveals a thick layer of lithium metal deposited beneath the coating. The Al2O3 coating on the electrode surface is mostly intact. The lithium metal deposition and dissolution mechanisms were determined combining electrochemical and post-mortem methods. Moreover, the cell response to mechanical and thermal abuse was determined in an open and adiabatic system, revealing a similar behavior of fresh and aged cells, thus, demonstrating no deterioration in the safety behavior despite the presence of a thick lithium metal layer on the anode surface.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317309461

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.