3 years ago

Proteolytic processing of the L-type Ca2+ channel alpha11.2 subunit in neurons [version 1; referees: 2 approved]

Geoffrey G. Murphy, Johannes W. Hell, Mary C. Horne, Peter B. Henderson, Olivia R. Buonarati
Background: The L-type Ca2+ channel Cav1.2 is a prominent regulator of neuronal excitability, synaptic plasticity, and gene expression. The central element of Cav1.2 is the pore-forming α11.2 subunit. It exists in two major size forms, whose molecular masses have proven difficult to precisely determine. Recent work suggests that α11.2 is proteolytically cleaved between the second and third of its four pore-forming domains (Michailidis et al,. 2014). Methods: To better determine the apparent molecular masses (MR)of the α11.2 size forms, extensive systematic immunoblotting of brain tissue as well as full length and C-terminally truncated α11.2 expressed in HEK293 cells was conducted using six different region–specific antibodies against α11.2. Results: The full length form of α11.2 migrated, as expected, with an apparent MR of ~250 kDa. A shorter form of comparable prevalence with an apparent MR of ~210 kDa could only be detected in immunoblots probed with antibodies recognizing α11.2 at an epitope 400 or more residues upstream of the C-terminus. Conclusions: The main two size forms of α11.2 are the full length form and a shorter form, which lacks ~350 distal C-terminal residues. Midchannel cleavage as suggested by Michailidis et al. (2014) is at best minimal in brain tissue.

Publisher URL: https://f1000research.com/articles/6-1166/v1

DOI: 10.12688/f1000research.11808.1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.