5 years ago

Molecular insight into protein binding orientations and interaction modes on hydrophobic charge-induction resin

Hydrophobic charge-induction chromatography (HCIC) with 4-mercaptoethyl-pyridine (MEP) as the functional ligand has been developed as a new technology for antibody purification. In the present work, molecular simulation methods were developed to investigate the interactions between the Fc fragment of IgG and a MEP ligand net. The MM/PBSA method was used to evaluate the binding energy for the MEP ligand net at different densities. It was found that ligand density had significant influence on the binding of Fc. Potential binding conformations were further analyzed by molecular dynamics simulation. It was found that the interaction between Fc and MEP ligand net is driven by self-adaptive conformation adjustment and multiple-site binding. Hydrophobic forces dominate the binding interaction, which appeared as the results of synergistic actions of binding sites located on CH2, CH3, and the consensus binding site (CBS) of the Fc fragment. At acidic pH, the electrostatic repulsion between the basic residues and the protonated pyridine ring group on MEP ligands is the main driving force for the detachment of the Fc fragment from the MEP net.

Publisher URL: www.sciencedirect.com/science

DOI: S0021967317309615

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.