5 years ago

Edge Sites with Unsaturated Coordination on Core–Shell Mn3O4@MnxCo3−xO4 Nanostructures for Electrocatalytic Water Oxidation

Edge Sites with Unsaturated Coordination on Core–Shell Mn3O4@MnxCo3−xO4 Nanostructures for Electrocatalytic Water Oxidation
Congling Hu, Lei Zhang, Jun Luo, Zhiqi Huang, Jing Shi, Zhi-Jian Zhao, Jinlong Gong
Transition-metal oxides are extensively investigated as efficient electrocatalysts for the oxygen evolution reaction (OER). However, large-scale applications remain challenging due to their moderate catalytic activity. Optimized regulation of surface states can lead to improvement of catalytic properties. Here, the design of Mn@CoxMn3−xO4 nanoparticles with abundant edge sites via a simple seed-mediated growth strategy is described. The unsaturated coordination generated on the edge sites of CoxMn3−xO4 shells makes a positive contribution to the surface-structure tailoring. Density functional theory calculations indicate that the edge sites with unsaturated coordination exhibit intense affinity for OH− in the alkaline electrolyte, which greatly enhances the electrochemical OER performance of the catalysts. The resulting Mn@CoxMn3−xO4 catalysts yield a current density of 10 mA cm−2 at an overpotential of 246 mV and a relatively low Tafel slope of 46 mV dec−1. The successful synthesis of these metal oxides nanoparticles with edge sites may pave a new path for rationally fabricating efficient OER catalysts. Mn@CoxMn3−xO4 nanoparticles with abundant edge sites are designed and synthesized via a simple seed-mediated growth strategy. The edge sites with unsaturated coordination exhibit intense affinity for OH− in the alkaline electrolyte, which greatly enhances the electrochemical oxygen evolution reaction performance.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201701820

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.