3 years ago

Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice

Diren Beyoğlu, Frank J. Gonzalez, Kristopher W. Krausz, Cen Xie, Daxesh P. Patel, Jeffrey R. Idle

by Daxesh P. Patel, Kristopher W. Krausz, Cen Xie, Diren Beyoğlu, Frank J. Gonzalez, Jeffrey R. Idle

A novel, selective and sensitive single-ion monitoring (SIM) gas chromatography-mass spectrometry (GCMS) method was developed and validated for the determination of energy metabolites related to glycolysis, the tricarboxylic acid (TCA) cycle, glutaminolysis, and fatty acid β-oxidation. This assay used N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) containing 1% tert-butyldimethylchlorosilane (TBDMCS) as derivatizing reagent and was highly reproducible, sensitive, specific and robust. The assay was used to analyze liver tissue and serum from C57BL/6N obese mice fed a high-fat diet (HFD) and C57BL/6N mice fed normal chow for 8 weeks. HFD-fed mice serum displayed statistically significantly reduced concentrations of pyruvate, citrate, succinate, fumarate, and 2-oxoglutarate, with an elevated concentration of pantothenic acid. In liver tissue, HFD-fed mice exhibited depressed levels of glycolysis end-products pyruvate and lactate, glutamate, and the TCA cycle intermediates citrate, succinate, fumarate, malate, and oxaloacetate. Pantothenate levels were 3-fold elevated accompanied by a modest increased gene expression of Scl5a6 that encodes the pantothenate transporter SLC5A6. Since both glucose and fatty acids inhibit coenzyme A synthesis from pantothenate, it was concluded that these data were consistent with downregulated fatty acid β-oxidation, glutaminolysis, glycolysis, and TCA cycle activity, due to impaired anaplerosis. The novel SIM GCMS assay provided new insights into metabolic effects of HFD in mice.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0177953

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.