4 years ago

Precise Molecular Design of High-Tc 3D Organic–Inorganic Perovskite Ferroelectric: [MeHdabco]RbI3 (MeHdabco = N-Methyl-1,4-diazoniabicyclo[2.2.2]octane)

Precise Molecular Design of High-Tc 3D Organic–Inorganic Perovskite Ferroelectric: [MeHdabco]RbI3 (MeHdabco = N-Methyl-1,4-diazoniabicyclo[2.2.2]octane)
Ren-Gen Xiong, Heng-Yun Ye, Wei-Qiang Liao, Yi Zhang, Ping-Ping Shi, Wan-Ying Zhang, Yuan-Yuan Tang, Da-Wei Fu, Peng-Fei Li
With the flourishing development of (CH3NH3)PbI3, three-dimensional (3D) organic–inorganic perovskites with unique structure–property flexibility have become a worldwide focus. However, they still face great challenges in effectively inducing ferroelectricity. Despite the typical 3D perovskite structure and the ability of dabco (1,4-diazabicyclo[2.2.2]octane) to trigger phase transition, unfortunately [H2dabco]RbCl3 adopts a nonpolar crystal structure without ferroelectricity. Within the larger RbI3 framework, we assemble N-methyl-1,4-diazoniabicyclo[2.2.2]octane (MeHdabco) obtained by reducing the molecular symmetry of dabco into a new 3D organic–inorganic perovskite. As expected, MeHdabco bearing a molecular dipole moment turns out to be vital in the generation of polar crystal structure and ferroelectric phase transition occurring at 430 K. It is the first time that the dabco component has been successfully wrapped into a 3D cage to achieve ferroelectricity even through there is intensive research on dabco. This precise molecular design strategy based on the modification of molecular symmetry provides an efficient route to enrich the family of 3D organic–inorganic perovskite ferroelectrics. Intriguingly, the iodine-doped crystal can exhibit intense saffron yellow luminescence with a high quantum yield of 17.17% under UV excitation, extending its application in the field of ferroelectric luminescence and/or multifunctional devices.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06013

DOI: 10.1021/jacs.7b06013

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.