3 years ago

Biocide-mediated corrosion of coiled tubing

Dongshan An, Frank Cheng, Mohita Sharma, Gerrit Voordouw, Tijan Pinnock, Tao Liu

by Mohita Sharma, Dongshan An, Tao Liu, Tijan Pinnock, Frank Cheng, Gerrit Voordouw

Coiled tubing corrosion was investigated for 16 field water samples (S5 to S20) from a Canadian shale gas field. Weight loss corrosion rates of carbon steel beads incubated with these field water samples averaged 0.2 mm/yr, but injection water sample S19 had 1.25±0.07 mm/yr. S19 had a most probable number of zero acid-producing bacteria and incubation of S19 with carbon steel beads or coupons did not lead to big changes in microbial community composition. In contrast other field water samples had most probable numbers of APB of 102/mL to 107/mL and incubation of these field water samples with carbon steel beads or coupons often gave large changes in microbial community composition. HPLC analysis indicated that all field water samples had elevated concentrations of bromide (average 1.6 mM), which may be derived from bronopol, which was used as a biocide. S19 had the highest bromide concentration (4.2 mM) and was the only water sample with a high concentration of active bronopol (13.8 mM, 2760 ppm). Corrosion rates increased linearly with bronopol concentration, as determined by weight loss of carbon steel beads, for experiments with S19, with filtered S19 and with bronopol dissolved in defined medium. This indicated that the high corrosion rate found for S19 was due to its high bronopol concentration. The corrosion rate of coiled tubing coupons also increased linearly with bronopol concentration as determined by electrochemical methods. Profilometry measurements also showed formation of multiple pits on the surface of coiled tubing coupon with an average pit depth of 60 μm after 1 week of incubation with 1 mM bronopol. At the recommended dosage of 100 ppm the corrosiveness of bronopol towards carbon steel beads was modest (0.011 mm/yr). Higher concentrations, resulting if biocide is added repeatedly as commonly done in shale gas operations, are more corrosive and should be avoided. Overdosing may be avoided by assaying the presence of residual biocide by HPLC, rather than by assaying the presence of residual surviving bacteria.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0181934

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.