5 years ago

Mechanistic Characterization of Escherichia coli l-Aspartate Oxidase from Kinetic Isotope Effects

Mechanistic Characterization of Escherichia coli l-Aspartate Oxidase from Kinetic Isotope Effects
John S. Blanchard, Subray Hegde, Carmen Chow
l-Aspartate oxidase, encoded by the nadB gene, is the first enzyme in the de novo synthesis of NAD+ in bacteria. This FAD-dependent enzyme catalyzes the oxidation of l-aspartate to generate iminoaspartate and reduced flavin. Distinct from most amino acid oxidases, it can use either molecular oxygen or fumarate to reoxidize the reduced enzyme. Sequence alignments and the three-dimensional crystal structure have revealed that the overall fold and catalytic residues of NadB closely resemble those of the succinate dehydrogenase/fumarate reductase family rather than those of the prototypical d-amino acid oxidases. This suggests that the enzyme can catalyze amino acid oxidation via typical amino acid oxidase chemistry, involving the removal of protons from the α-amino group and the transfer of the hydride from C2, or potentially deprotonation at C3 followed by transfer of the hydride from C2, similar to chemistry occurring during succinate oxidation. We have investigated this potential mechanistic ambiguity using a combination of primary, solvent, and multiple deuterium kinetic isotope effects in steady state experiments. Our results indicate that the chemistry is similar to that of typical amino acid oxidases in which the transfer of the hydride from C2 of l-aspartate to FAD is rate-limiting and occurs in a concerted manner with respect to deprotonation of the α-amine. Together with previous kinetic and structural data, we propose that NadB has structurally evolved from succinate dehydrogenase/fumarate reductase-type enzymes to gain the new functionality of oxidizing amino acids while retaining the ability to reduce fumarate.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.7b00307

DOI: 10.1021/acs.biochem.7b00307

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.