3 years ago

Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase

Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase
Gary W. Rubloff, Malachi Noked, Sang Bok Lee, Chuan-Fu Lin, Oliver Zhao, Alexander C. Kozen
Li metal is among the most attractive anode materials for secondary batteries, with a theoretical specific capacity > 3800 mAh g–1. However, its extremely low electrochemical potential is associated with high chemical reactivity that results in undesirable reduction of electrolyte species on the lithium surface, leading to spontaneous formation of a solid electrolyte interphase (SEI) with uncontrolled composition, morphology, and physicochemical properties. Here, we demonstrate a new approach to stabilize Li metal anodes using a hybrid organic/inorganic artificial solid electrolyte interphase (ASEI) deposited directly on the Li metal surface by self-healing electrochemical polymerization (EP) and atomic layer deposition (ALD). This hybrid protection layer is thin, flexible, ionically conductive, and electrically insulating. We show that Li metal protected by the hybrid protection layer gives rise to very stable cycling performance for over 300 cycles at current density 1 mA/cm2 and over 110 cycles at current density 2 mA/cm2, well above the threshold for dendrite growth at unprotected Li. Our strategy for protecting Li metal anodes by hybrid organic/inorganic ASEI represents a new approach to mitigating or eliminating dendrite formation at reactive metal anodes—illustrated here for Li—and may expedite the realization of a “beyond-Li-ion” battery technology employing Li metal anodes (e.g., Li–S).

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01496

DOI: 10.1021/acs.chemmater.7b01496

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.