5 years ago

Comparative proteomics of matrix fractions between pimpled and normal chicken eggshells

Comparative proteomics of matrix fractions between pimpled and normal chicken eggshells
Eggshell matrix can be dissociated into three matrix fractions: acid-insoluble matrix (M1), water-insoluble matrix (M2) and acid-water facultative-soluble matrix (M3). Matrix fractions from pimpled and normal eggshells were compared using label-free proteomic method to understand the differences among three matrix fractions and the proteins involved with eggshell quality. A total of 738 and 600 proteins were identified in the pimpled and normal calcified eggshells, respectively. Both eggshells showed a combined proteomic inventory of 769 proteins. In the same type of eggshell, a high similarity was present in the proteomes of three matrix fractions. These triply overlapped common proteins formed the predominant contributor to proteomic abundance in the matrix fractions. In each matrix fraction and between both eggshell models, normal and pimpled eggshells, a majority of the proteomes of the fractions were commonly observed. Forty-two common major proteins (iBAQ-derived abundance ≥0.095% of proteomic abundance) were identified throughout the three matrix fractions and these proteins might act as backbone constituents in chicken eggshell matrix. Finally, using 1.75-fold as up-regulated and using 0.57-fold as down-regulated cutoff values, twenty-five differential major proteins were screened and they all negatively influence and none showed any effect on eggshell quality. Overall, we uncovered the characteristics of proteomics of three eggshell matrix fractions and identified candidate proteins influencing eggshell quality. The next research on differential proteins will uncover the potential mechanisms underlying how proteins affect eggshell quality. Biological significance It was reported that the proteins in an eggshell can be divided into insoluble and soluble proteins. The insoluble proteins are thought to be an inter-mineral matrix and acts as a structural framework, while the soluble proteins are thought as intra-mineral matrix that are embedded within the crystal during calcification. However, the difference between matrix fractions is unknown. Cross-analysis of proteomic data of three matrix fractions from the same type of eggshell, uncovered triply overlapped common proteins formed the predominant contributor to proteomic abundance of any matrix fraction, and we suggested that abundance variance of some common proteins between the three matrix fractions might be an important cause of their solubility differences. Moreover, eggshell is formed in hen's uterus, and uterus tend to be considered as unique organ determining eggshell quality. By cross-analysis on proteomic data of three matrix fractions between two eggshell models, normal and pimpled eggshells, the differential proteins were screened as candidates influencing eggshell quality. And we suggested that the liver and spleen or lymphocytes might be the major organs influencing eggshell quality, because the most promising candidates are almost blood and non-collagenous proteins, and originated from above organs.

Publisher URL: www.sciencedirect.com/science

DOI: S1874391917302567

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.