4 years ago

Analysis of operational parameters, reactor kinetics, and floc characterization for the removal of estrogens via electrocoagulation

Emily K. Maher, Kassidy N. O'malley, Joe Heffron, Jingwan Huo, Brooke K. Mayer, Yin Wang, Patrick J. Mcnamara

Publication date: April 2019

Source: Chemosphere, Volume 220

Author(s): Emily K. Maher, Kassidy N. O'Malley, Joe Heffron, Jingwan Huo, Brooke K. Mayer, Yin Wang, Patrick J. McNamara


Estrogenic compounds can cause human and ecological health issues and have been detected in surface and drinking water. In this research a reactor analysis determined the impact of operational parameters, the best fit kinetic model for the removal of estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2) using a bench-top iron electrocoagulation reactor, and characterized the floc generated in-situ. The parameters investigated were current density, conductivity, stir rate, and polarity reversal. Estrogen removal correlated well with an increase in current density, while conductivity did not impact removal but did reduce potentials. High stir rates and frequent polarity reversal demonstrated greater removal. The operating parameters that achieved the greatest estrogen removal were a current density of 16.7 mA cm−2, conductivity of 1000 μS cm−1, stir rate of 500 rpm, and a polarity reversal time of 30 s. These parameters led to average removal efficiencies of 81%, 87%, 85%, and 97% for E1, E2, E3, and EE2, respectively. The removal data for all estrogenic compounds best fit a pseudo-first order relationship with kinetic rate constants of 0.015 min−1 for E1 and E2, 0.016 min−1 for E3 and 0.040 min−1 for EE2. The floc formed in-situ were characterized by determining the crystalline phases with X-ray diffraction, the size and zeta potential, and the shape and major components using scanning electron microscope with energy-dispersive X-ray spectrometer. The iron coagulant generated during electrocoagulation was lepidocrocite with a point of zero charge of 5.67 and an average floc diameter of 2255 nm.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.