3 years ago

Effects of tylosin, ciprofloxacin, and sulfadimidine on mcrA gene abundance and the methanogen community during anaerobic digestion of cattle manure

Xin Zhang, Jie Gu, Xiaojuan Wang, Kaiyu Zhang, Yanan Yin, Ranran Zhang, Sheqi Zhang

Publication date: April 2019

Source: Chemosphere, Volume 221

Author(s): Xin Zhang, Jie Gu, Xiaojuan Wang, Kaiyu Zhang, Yanan Yin, Ranran Zhang, Sheqi Zhang

Abstract

This study evaluated how tylosin (TYL), ciprofloxacin (CIP), and sulfadimidine (SM2) affected biogas and CH4 production during anaerobic digestion (AD) via their effects on the key genes related to methane production and the methanogenic community. The results showed that TYL, CIP, and SM2 reduced the production of methane during AD by 7.5%, 21.9%, and 16.0%, respectively. After AD for five days, CIP strongly inhibited the mcrA gene, where its abundance was 49% less than that in the control. TYL and SM2 decreased the abundances of Spirochaeta and Fibrobacteres during AD. High-throughput sequencing identified 10 methanogen genera, where Methanocorpusculum, Methanobrevibacter, and Methanosarcina accounted for 99.1% of the total archaeal reads. TYL and SM2 increased the efficiency of the acetoclastic methanogen pathway (Methanosarcina) by 29.04% and 52.79%, respectively. Redundancy analysis showed that Spirochaeta, Fibrobacteres, and Methanosarcina had positive correlations with CH4 and mcrA. We found that 30 mg kg−1 CIP had a strong inhibitory effect on methane production by influencing the abundances of Methanobrevibacter and Methanosarcina during AD.

Graphical abstract

Image 1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.