3 years ago

Is clay-polycation adsorbent future of the greener society? In silico modeling approach with comprehensive virtual screening

Supratik Kar, Shinjita Ghosh, Jerzy Leszczynski

Publication date: April 2019

Source: Chemosphere, Volume 220

Author(s): Supratik Kar, Shinjita Ghosh, Jerzy Leszczynski


Presence of organic pollutants in the wastewater and aquatic environment is one of the serious concerns worldwide. Superior adsorption of organic pollutants on modified clays with organocations is well approved nowadays. Among hybrid materials, clay–polyelectrolyte nanocomposites (CPN) are one of the specifically designed materials for the efficient adsorption of diverse organic pollutants. Due to higher surface area of the clay mineral coupled with a polymer coating, they have an explicit affinity for the organic pollutants. In this background, we have developed statistically significant and mechanistically interpretable quantitative structure-property relationship (QSPR) model for adsorption coefficient of diverse organic pollutants to the protonated montmorillonite–poly-4-vinylpyridine-co-styrene (Mt–HPVPcoS), a hybrid CPN. Further, the model was employed to predict the logkd value of ∼0.9 million chemicals from five diverse databases spanning from existing and experimental pharmaceuticals, natural and synthetic chemicals and dyes with unknown logkd value for the mentioned CPN. The reliability of predicted data is checked with two layers confidence screening i.e. the applicability domain study followed by prediction quality check by ‘Prediction Reliability Indicator’. Thus, prediction of each compound can be used for data gap filling by environmental regulatory authorities as well as industries. Followed by, maximum common substructure-based (MCS) algorithm is employed for individual database to extract the important structural scaffold for higher logkd to the mentioned CPN.

Graphical abstract

Image 1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.