3 years ago

The study of the index of ideality of correlation as a new criterion of predictive potential of QSPR/QSAR-models

Andrey A. Toropov, Ivan Raška, Alla P. Toropova, Maria Raškova, Aleksandar M. Veselinović, Jovana B. Veselinović

Publication date: 1 April 2019

Source: Science of The Total Environment, Volume 659

Author(s): Andrey A. Toropov, Ivan Raška, Alla P. Toropova, Maria Raškova, Aleksandar M. Veselinović, Jovana B. Veselinović

Abstract

Acetylcholinesterase (AChE) inhibitors, dihydrofolate reductase inhibitors (DHFR), Toxicity in Tetrahymena pyriformis (TP), Acute Toxicity in fathead minnow (TFat), Water solubility (WS), and Acute Aquatic Toxicity in Daphnia magna (DM) are examined as endpoints to establish quantitative structure – property/activity relationships (QSPRs/QSARs). The Index of Ideality of Correlation (IIC) is a measure of predictive potential. The IIC has been studied in a few recent works. The comparison of models for the six endpoints above confirms that the index can be a useful tool for building up and validation of QSPR/QSAR models. All examined endpoints are important from an ecologic point of view. The diversity of examined endpoints confirms that the IIC is real criterion of the predictive potential of a model.

Graphical abstract

Unlabelled Image

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.