3 years ago

Transfer of antibiotic resistance genes between Enterococcus faecalis strains in filter feeding zooplankton Daphnia magna and Daphnia pulex

Temilola O. Olanrewaju, Mary Mccarron, James S.g. Dooley, Joerg Arnscheidt

Publication date: 1 April 2019

Source: Science of The Total Environment, Volume 659

Author(s): Temilola O. Olanrewaju, Mary McCarron, James S.G. Dooley, Joerg Arnscheidt


Antibiotic resistant bacteria from faecal pollution sources are pervasive in aquatic environments. A facilitating role for the emergence of waterborne, multi-drug resistant bacterial pathogens has been attributed to biofiltration but had not yet been substantiated. This study investigated the effect of filtration and gut passage in Daphnia spp. on conjugal transfer of resistance genes in Enterococcus faecalis. In vivo conjugation experiments involved a vancomycin-resistant donor strain bearing a plasmid-borne vanA resistance gene, and two vancomycin-susceptible and rifampicin-resistant recipient strains in the presence of Daphnia magna or Daphnia pulex. Results showed successful transfer of the vanA resistance gene from donor to recipient; gene identity was confirmed by PCR and DNA sequencing. There was no significant difference in the number of transconjugants recovered from D. magna and D. pulex. However, transconjugant numbers differed by one order of magnitude between recipient strains. Transconjugant numbers from D. magna were also significantly different between treatments with ingestion of individual phytoplankton species before filtration of bacteria. The highest transfer efficiency calculated from excreted transconjugants was 2.5 × 10−6. This proof of concept for facilitation of horizontal gene transfer by a filter feeding organism provides evidence that Daphnia can disseminate antibiotic resistant transconjugants in the environment.

Graphical abstract

Unlabelled Image

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.