3 years ago

Degradation of pharmaceuticals in different water matrices by a solar homo/heterogeneous photo-Fenton process over modified alginate spheres

Elisabeth Cuervo Lumbaque, Raquel Wielens Becker, Débora Salmoria Araújo, Alexsandro Dallegrave, Tiago Ost Fracari, Vladimir Lavayen, Carla Sirtori


A solar homo/heterogeneous photo-Fenton process using five materials (Fe(II), Fe(III), mining waste, Fe(II)/mining waste, and Fe(III)/mining waste) supported on sodium alginate was used as a strategy to iron dosage for the degradation of eight pharmaceuticals in three different water matrices (distilled water, simulated wastewater, and hospital wastewater). Experiments were carried out in a photoreactor with a capacity of 1 L, using 3 g of iron-alginate spheres and an initial hydrogen peroxide concentration of 25 mg L−1, at pH 5.0. All the materials prepared were characterized by different techniques. The Fe(III)-alginate spheres presented the best pharmaceutical degradation after a treatment time of 116 min. Nineteen transformation products generated during the solar photo-Fenton process were identified by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, using a purpose-built database developed for detecting these transformation products. Finally, the transformation products identified were classified according to their toxicity and predicted biodegradability.

Publisher URL: https://link.springer.com/article/10.1007/s11356-018-04092-z

DOI: 10.1007/s11356-018-04092-z

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.