3 years ago

Biochar synthesized via pyrolysis of Broussonetia papyrifera leaves: mechanisms and potential applications for phosphate removal

Guoqiang Qiu, Yunlin Zhao, Hui Wang, Xiaofei Tan, Fangxu Chen, Xinjiang Hu

Abstract

In this study, Broussonetia papyrifera leaves collected from land near a restored manganese mine in the Hunan Province of China were converted into biochar under high-temperature anaerobic conditions, regeneration and utilization of agricultural and forest waste, and applied to the prevention of eutrophication. The physicochemical properties of the B. papyrifera biochar were characterized using Micromeritics 3Flex analyzer, scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), thermogravimetric analyzer (TGA), X-ray photoelectron spectrometer (XPS), zeta potential meter (zeta), and X-ray diffraction (XRD). The effects of pH, ionic strength, coexisting ions, time, initial concentration, and temperature on the decontamination process of phosphate in water were studied. The results indicated that adsorption was enhanced under alkaline conditions. The pseudo-second-order model of adsorption kinetics was applied to illustrate the adsorption processes. The chemical adsorption reaction was the main rate-limiting step in the adsorption process. Isotherm experimental data were best fitted by the Freundlich model at 25 °C and by the Langmuir model at 35 °C. The phosphate combined with B. papyrifera biochar mainly in the forms of exchangeable phosphorus (Ex-P), Al-bound phosphorus (Al-P), and Fe-bound phosphorus (Fe-P). These results indicate that B. papyrifera biochar is a suitable candidate for the treatment of a eutrophic body of water.

Publisher URL: https://link.springer.com/article/10.1007/s11356-018-04095-w

DOI: 10.1007/s11356-018-04095-w

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.