3 years ago

Daily Runoff Forecasting Using a Hybrid Model Based on Variational Mode Decomposition and Deep Neural Networks

Xinxin He, Jungang Luo, Ganggang Zuo, Jiancang Xie


Accurate and reliable runoff forecasting plays an increasingly important role in the optimal management of water resources. To improve the prediction accuracy, a hybrid model based on variational mode decomposition (VMD) and deep neural networks (DNN), referred to as VMD-DNN, is proposed to perform daily runoff forecasting. First, VMD is applied to decompose the original runoff series into multiple intrinsic mode functions (IMFs), each with a relatively local frequency range. Second, predicted models of decomposed IMFs are established by learning the deep feature values of the DNN. Finally, the ensemble forecasting result is formulated by summing the prediction sub-results of the modelled IMFs. The proposed model is demonstrated using daily runoff series data from the Zhangjiashan Hydrological Station in Jing River, China. To fully illustrate the feasibility and superiority of this approach, the VMD-DNN hybrid model was compared with EMD-DNN, EEMD-DNN, and multi-scale feature extraction -based VMD-DNN, EMD-DNN and EEMD-DNN. The results reveal that the proposed hybrid VMD-DNN model produces the best performance based on the Nash-Sutcliffe efficiency (NSE = 0.95), root mean square error (RMSE = 9.92) and mean absolute error (MAE = 3.82) values. Thus the proposed hybrid VMD-DNN model is a promising new method for daily runoff forecasting.

Publisher URL: https://link.springer.com/article/10.1007/s11269-019-2183-x

DOI: 10.1007/s11269-019-2183-x

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.