Platinum nanoparticle catalysis of methanol for thermoelectric power generation
Publication date: 1 March 2019
Source: Applied Energy, Volume 237
Author(s): Bhanuprakash Reddy Guggilla, Alexander Rusted, Smitesh Bakrania
Abstract
Catalytic combustion of hydrocarbon and oxygenated fuels has the potential to provide an alternative power source for portable electronic devices. Our previous studies have demonstrated sustained catalytic combustion for a variety of fuels using multi-channel cordierite substrates. In particular, methanol-air mixtures catalyzed by platinum nanoparticles yielded room-temperature self-ignition and stable combustion. The present work explores a stacked-reactor design of a microcombustion-thermoelectric coupled device that marries thermal management strategies with catalytic combustion. Synthesized platinum nanoparticles ( 8 nm) were deposited on rectangular cordierite substrate cartridges with 800 m wide channels. A custom-designed copper-aluminum reactor was used to host the catalytic cartridges. A near-stoichiometric mixture of methanol-air at 8000 mL/min air flow rate produced 62 C temperature difference across thermoelectric generators. Material analysis demonstrated a non-uniform restructuring of catalyst material across the substrate. A parametric study of catalyst loading and air flow mapped the optimal operational range of the device. While a relatively low power output of 490 mW was measured, a theoretical power potential of 1400 mW was estimated. The results confirm the unique advantages of multi-channel catalytic cartridges and guide future developments in the application of nanocatalytic microcombustion for portable power sources.
Publisher URL: https://www.sciencedirect.com/science/article/pii/S0306261918319020
DOI: S0306261918319020
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.