3 years ago

Performance of a modified solar chimney power plant for power generation and vegetation

Yangyang Xu, Xinping Zhou

Publication date: Available online 9 January 2019

Source: Energy

Author(s): Yangyang Xu, Xinping Zhou


This paper develops a mathematical model to investigate the performance of a modified solar chimney power plant (MSCPP) for purposes of both power generation and vegetation. It then estimates the net added benefit. Results show that with the vegetation area enlarging, the MFR of the vapor increases, and more heat is used as the latent heat for water evaporation, leading to considerable reduction of the power. Condensation from the saturated air occurs only for very large vegetation area. On a cooler day, the plant produces less power and the condensation occurs for smaller vegetation area. Higher relative humidity of ambient air results in clear reduction of the MFR of the vapor evaporating from the vegetation area, and accordingly the great enhancement of the power. The benefit from agricultural products is larger than the benefit loss caused by the electricity loss, and the benefit of fresh water condensed from the saturated air is negligible. This leads to net added benefit for the MSCPP compared to the conventional plant. The net added benefit becomes greater with larger vegetation area. When the chimney is heightened from 1000 m to 1500 m, the power is enhanced greatly; however, the net added benefit becomes smaller.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.