4 years ago

An actuator line - Immersed boundary method for simulation of multiple tidal turbines

Cheng Liu, Changhong Hu

Publication date: Available online 8 January 2019

Source: Renewable Energy

Author(s): Cheng Liu, Changhong Hu

Abstract

This work proposes an efficient actuator line – immersed boundary (AL-IB) method to predict the wake of multiple horizontal-axis tidal turbines (HATTs). A sharp IB method with a simple adaptive mesh refinement strategy is used to improve the computational efficiency. The velocity and other scalar fields adjacent to the solid surface are reconstructed by a moving least square (MLS) interpolation. A computationally efficient AL model is applied to represent the rotors by adding source term to the governing equation rather than resolving the fully geometry of the blade. To predict the turbulent wake, the AL-IB method is implemented with an unsteady Reynolds-averaged Navier–Stokes (URANS) solver. Performance of three types of turbulence models, kωSST model, standard and corrected kω model are evaluated. An efficient wall function model is proposed for the MLS-IB approach. The accuracy of the present AL-IB method is validated by numerical tests of a single rotor and multiple tandem arranged IFREMER rotors [1,2]. Wake interference of Manchester rotors [3] with side by side arrangement is also investigated numerically. The predicted wake velocity and turbulence intensity (TI) are in reasonably good agreement with the experimental results.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.