3 years ago

Stromal control of intestinal development and the stem cell niche

Gediminas Greicius, David M. Virshup

Publication date: Available online 8 January 2019

Source: Differentiation

Author(s): Gediminas Greicius, David M. Virshup

Abstract

Intestinal homeostasis is dependent on the continuous production of differentiated epithelial cells from a sustainable and resilient stem cell compartment. Wnt/β-catenin signaling plays a central role in this process, cooperating with R-spondins, growth factors and regulators of the TGF-β/BMP pathway to generate a specialized tissue microenvironment that regulates the intestinal stem cell niche. Recent studies revealed that many of these factors are produced in a paracrine manner by specialized cell populations that reside in the subepithelial stroma. These stromal signal-producing cells, variously called telocytes and myofibroblasts, can be identified by expression of specific genes including PdgfRa, Gli1 and FoxL1. In this review we discuss how the intestinal stem cell niche is established during development and then sustained during adult intestinal homeostasis by these stromal cell populations. The signaling stroma cells regulate intestinal stem cell development into different epithelial lineages and play an important role in the response to environmental stresses.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.