3 years ago

Electrostatically controlled fluorometric assay for differently charged biotargets based on the use of silver/copper bimetallic nanoclusters modified with polyethyleneimine and graphene oxide

Jinlan Yang, Naizhong Song, Qiong Jia

Abstract

An electrostatically controlled fluorometric assay is described that is based on the use of silver/copper bimetallic nanoclusters. The nanoclusters were coated with polyethyleneimine (PEI-Ag/CuNCs). At pH 7.4, these particles are positively charged. Their blue fluorescence (with excitation/emission peaks at 341/464 nm) depends on local pH values and temperature. If graphene oxide (which is negatively charged at pH 7.4) is introduced, the fluorescence of the PEI-Ag/CuNCs is quenched. Based on various electrostatic interactions, three kinds of biomacromolecules were detected by fluorometry. These include (negatively charged) heparin, (positively charged) protamine, and (virtually uncharged) trypsin. Heparin is detected by using GO/PEI-Ag/CuNCs, protamine by using GO/heparin/PEI-Ag/CuNCs, and trypsin by using GO/protamine/heparin/PEI-Ag/CuNC. The detection limits and linear ranges are 4.8 nM and 10–450 nM for heparin, 0.09 μg·mL−1 and 0.25–5 μg·mL−1 for protamine, and 0.03 μg·mL−1 and 0.05–1 μg·mL−1 for trypsin. Zeta potentials of the various substances in the system were determined to elucidate the detection mechanism. Comceivably, the method provides a widely applicable approach for electrostatically controlled biomolecular assays.

Graphical abstract

Schematic presentation of electrostatically controlled fluorometric assay for the detection of heparin, protamine, and trypsin based on the silver/copper bimetallic nanoclusters modified with polyethyleneimine and graphene oxide.

Publisher URL: https://link.springer.com/article/10.1007/s00604-018-3179-6

DOI: 10.1007/s00604-018-3179-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.