3 years ago

Presence-absence estimation in audio recordings of tropical frog communities.

Andrés Estrella Terneux, Damián Nicolalde, Daniel Nicolalde, Andrés Merino-viteri

One non-invasive way to study frog communities is by analyzing long-term samples of acoustic material containing calls. This immense task has been optimized by the development of Machine Learning tools to extract ecological information. We explored a likelihood-ratio audio detector based on Gaussian mixture model classification of 10 frog species, and applied it to estimate presence-absence in audio recordings from an actual amphibian monitoring performed at Yasun\'i National Park in the Ecuadorian Amazonia. A modified filter-bank was used to extract 20 cepstral features that model the spectral content of frog calls. Experiments were carried out to investigate the hyperparameters and the minimum frog-call time needed to train an accurate GMM classifier. With 64 Gaussians and 12 seconds of training time, the classifier achieved an average weighted error rate of 0.9% on the 10-fold cross-validation for nine species classification, as compared to 3% with MFCC and 1.8% with PLP features. For testing, 10 GMMs were trained using all the available training-validation dataset to study 23.5 hours in 141, 10-minute long samples of unidentified real-world audio recorded at two frog communities in 2001 with analog equipment. To evaluate automatic presence-absence estimation, we characterized the audio samples with 10 binary variables each corresponding to a frog species, and manually labeled a sub-set of 18 samples using headphones. A recall of 87.5% and precision of 100% with average accuracy of 96.66% suggests good generalization ability of the algorithm, and provides evidence of the validity of this approach to study real-world audio recorded in a tropical acoustic environment. Finally, we applied the algorithm to the available corpus, and show its potentiality to gain insights into the temporal reproductive behavior of frogs.

Publisher URL: http://arxiv.org/abs/1901.02495

DOI: arXiv:1901.02495v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.