Viewpoint Invariant Change Captioning.
The ability to detect that something has changed in an environment is valuable, but often only if it can be accurately conveyed to a human operator. We introduce Viewpoint Invariant Change Captioning, and develop models which can both localize and describe via natural language complex changes in an environment. Moreover, we distinguish between a change in a viewpoint and an actual scene change (e.g. a change of objects' attributes). To study this new problem, we collect a Viewpoint Invariant Change Captioning Dataset (VICC), building it off the CLEVR dataset and engine. We introduce 5 types of scene changes, including changes in attributes, positions, etc. To tackle this problem, we propose an approach that distinguishes a viewpoint change from an important scene change, localizes the change between "before" and "after" images, and dynamically attends to the relevant visual features when describing the change. We benchmark a number of baselines on our new dataset, and systematically study the different change types. We show the superiority of our proposed approach in terms of change captioning and localization. Finally, we also show that our approach is general and can be applied to real images and language on the recent Spot-the-diff dataset.
Publisher URL: http://arxiv.org/abs/1901.02527
DOI: arXiv:1901.02527v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.