4 years ago

Deep Neural Networks Predicting Oil Movement in a Development Unit.

Pavel Temirchev, Maxim Simonov, Ruslan Kostoev, Evgeny Burnaev, Ivan Oseledets, Alexey Akhmetov, Andrey Margarit, Alexander Sitnikov, Dmitry Koroteev

We present a novel technique for assessing the dynamics of multiphase fluid flow in the oil reservoir. We demonstrate an efficient workflow for handling the 3D reservoir simulation data in a way which is orders of magnitude faster than the conventional routine. The workflow (we call it "Metamodel") is based on a projection of the system dynamics into a latent variable space, using Variational Autoencoder model, where Recurrent Neural Network predicts the dynamics. We show that being trained on multiple results of the conventional reservoir modelling, the Metamodel does not compromise the accuracy of the reservoir dynamics reconstruction in a significant way. It allows forecasting not only the flow rates from the wells, but also the dynamics of pressure and fluid saturations within the reservoir. The results open a new perspective in the optimization of oilfield development as the scenario screening could be accelerated sufficiently.

Publisher URL: http://arxiv.org/abs/1901.02549

DOI: arXiv:1901.02549v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.