3 years ago

Manipulation-skill Assessment from Videos with Spatial Attention Network.

Zhenqiang Li, Yifei Huang, Minjie Cai, Yoichi Sato

Recent advances in computer vision have made it possible to automatically assess from videos the manipulation skills of humans in performing a task, which has many important applications in domains such as health rehabilitation and manufacturing. However, previous methods used all video appearance as input and did not consider the attention mechanism humans use in assessing videos, which may limit their performance since only a part of video regions is critical for skill assessment. Our motivation here is to model human attention in videos that helps to focus on most relevant video regions for better skill assessment. In particular, we propose a novel deep model that learns spatial attention automatically from videos in an end-to-end manner. We evaluate our approach on a newly collected dataset of infant grasping task and four existing datasets of hand manipulation tasks. Experiment results demonstrate that state-of-the-art performance can be achieved by considering attention in automatic skill assessment.

Publisher URL: http://arxiv.org/abs/1901.02579

DOI: arXiv:1901.02579v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.