3 years ago

D${}^3$TW: Discriminative Differentiable Dynamic Time Warping for Weakly Supervised Action Alignment and Segmentation.

Chien-yi Chang, De-an Huang, Yanan Sui, Li Fei-fei, Juan Carlos Niebles

We address weakly-supervised action alignment and segmentation in videos, where only the order of occurring actions is available during training. We propose Discriminative Differentiable Dynamic Time Warping (D${}^3$TW), which is the first discriminative model for weak ordering supervision. This allows us to bypass the degenerated sequence problem usually encountered in previous work. The key technical challenge for discriminative modeling with weak-supervision is that the loss function of the ordering supervision is usually formulated using dynamic programming and is thus not differentiable. We address this challenge by continuous relaxation of the min-operator in dynamic programming and extend the DTW alignment loss to be differentiable. The proposed D${}^3$TW innovatively solves sequence alignment with discriminative modeling and end-to-end training, which substantially improves the performance in weakly supervised action alignment and segmentation tasks. We show that our model outperforms the current state-of-the-art across three evaluation metrics in two challenging datasets.

Publisher URL: http://arxiv.org/abs/1901.02598

DOI: arXiv:1901.02598v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.