3 years ago

DeCoILFNet: Depth Concatenation and Inter-Layer Fusion based ConvNet Accelerator.

Akanksha Baranwal, Ishan Bansal, Roopal Nahar, K. Madhava Krishna

Convolutional Neural Networks (CNNs) are rapidly gaining popularity in varied fields. Due to their increasingly deep and computationally heavy structures, it is difficult to deploy them on energy constrained mobile applications. Hardware accelerators such as FPGAs have come up as an attractive alternative. However, with the limited on-chip memory and computation resources of FPGA, meeting the high memory throughput requirement and exploiting the parallelism of CNNs is a major challenge. We propose a high-performance FPGA based architecture - Depth Concatenation and Inter-Layer Fusion based ConvNet Accelerator - DeCoILFNet which exploits the intra-layer parallelism of CNNs by flattening across depth and combines it with a highly pipelined data flow across the layers enabling inter-layer fusion. This architecture significantly reduces off-chip memory accesses and maximizes the throughput. Compared to a 3.5GHz hexa-core Intel Xeon E7 caffe-implementation, our 120MHz FPGA accelerator is 30X faster. In addition, our design reduces external memory access by 11.5X along with a speedup of more than 2X in the number of clock cycles compared to state-of-the-art FPGA accelerators.

Publisher URL: http://arxiv.org/abs/1901.02774

DOI: arXiv:1901.02774v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.