3 years ago

Sentiment Analysis of Czech Texts: An Algorithmic Survey.

Erion Çano, Ondřej Bojar

In the area of online communication, commerce and transactions, analyzing sentiment polarity of texts written in various natural languages has become crucial. While there have been a lot of contributions in resources and studies for the English language, "smaller" languages like Czech have not received much attention. In this survey, we explore the effectiveness of many existing machine learning algorithms for sentiment analysis of Czech Facebook posts and product reviews. We report the sets of optimal parameter values for each algorithm and the scores in both datasets. We finally observe that support vector machines are the best classifier and efforts to increase performance even more with bagging, boosting or voting ensemble schemes fail to do so.

Publisher URL: http://arxiv.org/abs/1901.02780

DOI: arXiv:1901.02780v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.