3 years ago

Detecting Adversarial Image Examples in Deep Networks with Adaptive Noise Reduction.

Bin Liang, Hongcheng Li, Miaoqiang Su, Xirong Li, Wenchang Shi, Xiaofeng Wang

Recently, many studies have demonstrated deep neural network (DNN) classifiers can be fooled by the adversarial example, which is crafted via introducing some perturbations into an original sample. Accordingly, some powerful defense techniques were proposed. However, existing defense techniques often require modifying the target model or depend on the prior knowledge of attacks. In this paper, we propose a straightforward method for detecting adversarial image examples, which can be directly deployed into unmodified off-the-shelf DNN models. We consider the perturbation to images as a kind of noise and introduce two classic image processing techniques, scalar quantization and smoothing spatial filter, to reduce its effect. The image entropy is employed as a metric to implement an adaptive noise reduction for different kinds of images. Consequently, the adversarial example can be effectively detected by comparing the classification results of a given sample and its denoised version, without referring to any prior knowledge of attacks. More than 20,000 adversarial examples against some state-of-the-art DNN models are used to evaluate the proposed method, which are crafted with different attack techniques. The experiments show that our detection method can achieve a high overall F1 score of 96.39% and certainly raises the bar for defense-aware attacks.

Publisher URL: http://arxiv.org/abs/1705.08378

DOI: arXiv:1705.08378v5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.