3 years ago

Privacy-Preserving Adversarial Networks.

Ardhendu Tripathy, Ye Wang, Prakash Ishwar

We propose a data-driven framework for optimizing privacy-preserving data release mechanisms toward the information-theoretically optimal tradeoff between minimizing distortion of useful data and concealing sensitive information. Our approach employs adversarially-trained neural networks to implement randomized mechanisms and to perform a variational approximation of mutual information privacy. We empirically validate our Privacy-Preserving Adversarial Networks (PPAN) framework with experiments conducted on discrete and continuous synthetic data, as well as the MNIST handwritten digits dataset. With the synthetic data, we find that our model-agnostic PPAN approach achieves tradeoff points very close to the optimal tradeoffs that are analytically-derived from model knowledge. In experiments with the MNIST data, we visually demonstrate a learned tradeoff between minimizing the pixel-level distortion versus concealing the written digit.

Publisher URL: http://arxiv.org/abs/1712.07008

DOI: arXiv:1712.07008v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.