3 years ago

On Computing the Multiplicity of Cycles in Bipartite Graphs Using the Degree Distribution and the Spectrum of the Graph.

Ali Dehghan, Amir H. Banihashemi

Counting short cycles in bipartite graphs is a fundamental problem of interest in the analysis and design of low-density parity-check (LDPC) codes. The vast majority of research in this area is focused on algorithmic techniques. Most recently, Blake and Lin proposed a computational technique to count the number of cycles of length $g$ in a bi-regular bipartite graph, where $g$ is the girth of the graph. The information required for the computation is the node degree and the multiplicity of the nodes on both sides of the partition, as well as the eigenvalues of the adjacency matrix of the graph (graph spectrum). In this paper, the result of Blake and Lin is extended to compute the number of cycles of length $g+2, \ldots, 2g-2$, for bi-regular bipartite graphs, as well as the number of $4$-cycles and $6$-cycles in irregular and half-regular bipartite graphs, with $g \geq 4$ and $g \geq 6$, respectively.

Publisher URL: http://arxiv.org/abs/1806.01433

DOI: arXiv:1806.01433v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.