3 years ago

A Deep Learning Approach to the Inversion of Borehole Resistivity Measurements.

M. Shahriari, D. Pardo, A. Picón, A. Galdrán, J. Del Ser, C. Torres-verdín

We use borehole resistivity measurements to map the electrical properties of the subsurface and to increase the productivity of a reservoir. When used for geosteering purposes, it becomes essential to invert them in real time. In this work, we explore the possibility of using Deep Neural Network (DNN) to perform a rapid inversion of borehole resistivity measurements. Herein, we build a DNN that approximates the following inverse problem: given a set of borehole resistivity measurements, the DNN is designed to deliver a physically meaningful and data-consistent piecewise one-dimensional layered model of the surrounding subsurface. Once the DNN is built, we can perform the actual inversion of the field measurements in real time. We illustrate the performance of DNN of logging-while-drilling measurements acquired on high-angle wells via synthetic data.

Publisher URL: http://arxiv.org/abs/1810.04522

DOI: arXiv:1810.04522v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.