3 years ago

A Gaussian Process perspective on Convolutional Neural Networks.

Anastasia Borovykh

In this paper we cast the well-known convolutional neural network in a Gaussian process perspective. In this way we hope to gain additional insights into the performance of convolutional networks, in particular understand under what circumstances they tend to perform well and what assumptions are implicitly made in the network. While for fully-connected networks the properties of convergence to Gaussian processes have been studied extensively, little is known about situations in which the output from a convolutional network approaches a multivariate normal distribution.

Publisher URL: http://arxiv.org/abs/1810.10798

DOI: arXiv:1810.10798v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.