3 years ago

Auto-Encoder-BoF/HMM System for Arabic Text Recognition.

Najoua Rahal, Maroua Tounsi, Adel M. Alimi

The recognition of Arabic text, in both handwritten and printed forms, represents a fertile provenance of technical difficulties for Optical Character Recognition (OCR). Indeed, the printed is commonly governed by well-established calligraphy rules and the characters are well aligned. However, there is not always a system capable of reading Arabic printed text in an unconstrained environments such as unlimited vocabulary, multi styles, mixed-font and their great morphological variability. This diversity complicates the choice of features to extract and algorithm of segmentation. In this context, we adopt a new solution for unlimited-vocabulary and mixed-font Arabic printed text recognition. The proposed system is based on the adoption of Bag of Features (BoF) model using Sparse Auto-Encoder (SAE) for features representation and Hidden Markov Models (HMM) for recognition. As results, the obtained average accuracies of recognition vary between 99.65% and 99.96% for the mono-font and exceed 99% for mixed-font.

Publisher URL: http://arxiv.org/abs/1812.03680

DOI: arXiv:1812.03680v4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.