3 years ago

Flow Based Self-supervised Pixel Embedding for Image Segmentation.

Bin Ma, Shubao Liu, Yingxuan Zhi, Qi Song

We propose a new self-supervised approach to image feature learning from motion cue. This new approach leverages recent advances in deep learning in two directions: 1) the success of training deep neural network in estimating optical flow in real data using synthetic flow data; and 2) emerging work in learning image features from motion cues, such as optical flow. Building on these, we demonstrate that image features can be learned in self-supervision by first training an optical flow estimator with synthetic flow data, and then learning image features from the estimated flows in real motion data. We demonstrate and evaluate this approach on an image segmentation task. Using the learned image feature representation, the network performs significantly better than the ones trained from scratch in few-shot segmentation tasks.

Publisher URL: http://arxiv.org/abs/1901.00520

DOI: arXiv:1901.00520v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.