3 years ago

The temporal requirements of directly observing self-gravitating spiral waves in protoplanetary discs with ALMA.

Cassandra Hall, Ruobing Dong, Ken Rice, Tim J. Harries, Joan Najita, Richard Alexander, Sean Brittain

We investigate how the detectability of signatures of self-gravity in a protoplanetary disc depends on its temporal evolution. We run a one-dimensional model for secular timescales to follow the disc mass as a function of time. We then combine this with three-dimensional global hydrodynamics simulations that employ a hybrid radiative transfer method to approximate realistic heating and cooling. We simulate ALMA continuum observations of these systems, and find that structures induced by the gravitational instability (GI) are readily detectable when $q=M_\mathrm{disc}/M_*\gtrsim 0.25$ and $R_\mathrm{outer}\lesssim 100$ au. The high accretion rate generated by gravito-turbulence in such a massive disc drains its mass to below the detection threshold in $\sim10^4$ years, or approximately 1\% of the typical disc lifetime. Therefore, discs with spiral arms detected in ALMA dust observations, if generated by self-gravity, must either be still receiving infall to maintain a high $q$ value, or have just emerged from their natal envelope. %\redcomment Detection of substructure in systems with lower $q$ is possible, but would require a specialist integration with the most extended configuration over several days. This disfavours the possibility of GI-caused spiral structure in systems with $q<0.25$ being detected in relatively short integration times, such as those found in the DSHARP ALMA survey \citep{dsharp1,dsharpspirals}. We find no temporal dependence of detectability on dynamical timescales

Publisher URL: http://arxiv.org/abs/1901.02407

DOI: arXiv:1901.02407v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.