3 years ago

Kohn-Luttinger Superconductivity in Twisted Bilayer Graphene.

J. González, T. Stauber

We show that the recently observed superconductivity in twisted bilayer graphene (TBG) can be explained as a consequence of the Kohn-Luttinger (KL) instability which leads to an effective attraction between electrons with originally repulsive interaction. Usually, the KL instability takes place at extremely low energy scales, but in TBG, a doubling and subsequent strong coupling of the van Hove singularities (vHS) in the electronic spectrum occurs as the magic angle is approached, leading to extended saddle points in the highest valence band (VB) with almost perfect nesting between states belonging to different valleys. The highly anisotropic screening induces an effective attraction in a $p$-wave channel with odd parity under the exchange of the two disjoined patches of the Fermi line. We also predict the appearance of a spin-density wave (SDW) instability, adjacent to the superconducting phase, and the opening of a gap in the electronic spectrum from the condensation of spins with wave vector corresponding to the nesting vector close to the vHS.

Publisher URL: http://arxiv.org/abs/1807.01275

DOI: arXiv:1807.01275v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.