3 years ago

Charge transport in graphene-based mesoscopic realizations of Sachdev-Ye-Kitaev models.

Oguzhan Can, Emilian M. Nica, Marcel Franz

We consider a recent proposal for a physical realization of the Sachdev-Ye-Kitaev (SYK) model in the zeroth-Landau-level sector of an irregularly-shaped graphene flake. We study in detail charge transport signatures of the unique non-Fermi liquid state of such a quantum dot coupled to non-interacting leads. The properties of this setup depend essentially on the ratio $p$ between the number of transverse modes in the lead $M$ and the number of the fermion degrees of freedom $N$ on the SYK dot. This ratio can be tuned via the magnetic field applied to the dot. Our proposed setup gives access to the non-trivial conformal-invariant regime associated with the SYK model as well as a more conventional Fermi-liquid regime via tuning the field. The dimensionless linear response conductance acquires distinct $\sqrt{p}$ and $1/\sqrt{p}$ dependencies for the two phases respectively in the low-temperature limit, with a universal jump at the transition. We find that corrections scale linearly and quadratically in either temperature or frequency on the two sides of the transition. In the weak tunneling regime we find differential conductance proportional to the inverse square root of the applied voltage bias $U$. This dependence is replaced by a conventional Ohmic behavior with constant conductance proportional to $1/\sqrt{T}$ for bias energy $eU$ smaller than temperature scale $k_BT$. We also describe the out-of-equilibrium current-bias characteristics and discuss various crossovers between the limiting behaviors mentioned above.

Publisher URL: http://arxiv.org/abs/1808.06584

DOI: arXiv:1808.06584v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.