3 years ago

Projector-based renormalization approach to electron-hole-photon systems in nonequlibrium steady-state.

Klaus W. Becker, Holger Fehske, Van-nham Phan

We present an extended version of the projector-based renormalization method that can be used to address not only equilibrium but also non-equilibrium situations in coupled fermion-boson systems. The theory is applied to interacting electrons, holes and photons in a semiconductor microcavity, where the loss of cavity photons into vacuum is of particular importance. The method incorporates correlation and fluctuation processes beyond mean-field theory in a wide parameter range of detuning, Coulomb interaction, light-matter coupling and damping, even in the case when the number of quasiparticle excitations is large. This enables the description of exciton and polariton formation, and their possible condensation through spontaneous phase symmetry breaking by analyzing the ground-state, steady-state and spectral properties of a rather generic electron-hole-photon Hamiltonian, which also includes the coupling to two fermionic baths and a free-space photon reservoir. Thereby, the steady-state behavior of the system is obtained by evaluating expectation values in the long-time limit by means of the Mori-Zwanzig projection technique. Tracking and tracing different order parameters, the fully renormalized single-particle spectra and the steady-state luminescence, we demonstrate the Bose-Einstein condensation of excitons and polaritons and its smooth transition when the excitation density is increased.

Publisher URL: http://arxiv.org/abs/1809.10281

DOI: arXiv:1809.10281v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.