Evidence for Modified Newtonian Dynamics from Cavendish-type gravitational constant experiments.
Recent experimental results for the gravitational constant G from Cavendish-type experiments were analysed in the framework of MOND (Modified Newtonian Dynamics). The basic assumption for the analysis is that MOND corrections apply only to the component of the gravitational field which leads to an accelerated motion of the pendulum body according to Newtons second law. The analysis is based on numerical solutions of the MOND corrected differential equation for a linear pendulum at small acceleration magnitudes of the order of Milgroms fundamental acceleration parameter a_0 = 10^-10 m/s^2 for the case of a mixed gravitational and electromagnetic pendulum restoring force. The results from the pendulum simulations were employed to fit experimental data from recent Cavendish-type experiments with reported discrepancies between G values determined by different measurement methods for a similar experimental setup, namely time of swing, angular acceleration feedback, electrostatic servo and static deflection methods. The analysis revealed that the reported discrepancies can be explained by MOND corrections with one single fit parameter. The MOND corrected results were found to be consistent with a value of G = 6.6742 x 10^-11 m^3 kg^-1 s^-2 within a standard deviation of 14 ppm.
Publisher URL: http://arxiv.org/abs/1901.02604
DOI: arXiv:1901.02604v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.