3 years ago

Closed timelike curves and the second law of thermodynamics.

Małgorzata Bartkiewicz, Andrzej Grudka, Ryszard Horodecki, Justyna Łodyga, Jacek Wychowaniec

One out of many emerging implications from solutions of Einstein's general relativity equations are closed timelike curves (CTCs), which are trajectories through spacetime that allow for time travel to the past without exceeding the speed of light. Two main quantum models of computation with the use of CTCs were introduced by Deutsch (D-CTC) and by Bennett and Schumacher (P-CTC). Unlike the classical theory in which CTCs lead to logical paradoxes, the quantum D-CTC model provides a solution that is logically consistent due to the self-consistency condition imposed on the evolving system, whereas the quantum P-CTC model chooses such solution through post-selection. Both models are non-equivalent and imply nonstandard phenomena in the field of quantum computation and quantum mechanics. In this work we study the implications of these two models on the second law of thermodynamics - the fundamental principle which states that in an isolated system the entropy never decreases. In particular, we construct CTC-based quantum circuits which lead to decrease of entropy.

Publisher URL: http://arxiv.org/abs/1711.08334

DOI: arXiv:1711.08334v4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.