3 years ago

Kinetic theory for classical and quantum many-body chaos.

Sašo Grozdanov, Koenraad Schalm, Vincenzo Scopelliti

For perturbative scalar field theories, the late-time-limit of the out-of-time-ordered correlation function that measures (quantum) chaos is shown to be equal to a Boltzmann-type kinetic equation that measures the total gross (instead of net) particle exchange between phase space cells, weighted by a function of energy. This derivation gives a concrete form to numerous attempts to derive chaotic many-body dynamics from ad hoc kinetic equations. A period of exponential growth in the total gross exchange determines the Lyapunov exponent of the chaotic system. Physically, the exponential growth is a front propagating into an unstable state in phase space. As in conventional Boltzmann transport, which follows from the dynamics of the net particle number density exchange, the kernel of this kinetic integral equation is also set by the 2-to-2 scattering rate. This provides a mathematically precise statement of the known fact that in dilute weakly coupled gases transport and scrambling (or ergodicity) are controlled by the same physics.

Publisher URL: http://arxiv.org/abs/1804.09182

DOI: arXiv:1804.09182v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.