3 years ago

Exploitation of Transparent Conductive Oxides in the Implementation of a Window-Integrated Wireless Sensor Node.

Kaarle Jaakkola, Kirsi Tappura

Exploitation of transparent conductive oxides (TCO) to implement an energy-autonomous sensor node for a wireless sensor network (WSN) is studied and a practical solution presented. In the practical implementations, flexible and rigid substrates that is polyimide and glass, are coated with TCO, namely aluminum doped zinc oxide (AZO). AZO-coated flexible substrates are used to form thermoelectric generators (TEG) that produce electricity for the sensor electronics of the node from thermal gradients on a window. As the second solution to utilize AZO, its conductive properties are exploited to implement transparent antennas for the sensor node. Antennas for a UHF RFID transponder and the Bluetooth radio of the node are implemented. A prototype of a flexible transparent TEG, with the area of 67 cm2 when folded, was measured to produce power of 1.6 uW with a temperature difference of 43 K. A radiation efficiency of -9.1 dB was measured for the transparent RFID antenna prototype with the center frequency of 900 MHz. Radiation efficiencies between -3.8 dB and -0.4 dB, depending on the substrate, were obtained for the 2.45 GHz Bluetooth antenna.

Publisher URL: http://arxiv.org/abs/1901.02699

DOI: arXiv:1901.02699v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.